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Trajectories to and from the Lagrange Points
and the Primary Body Surfaces

Hexi Baoyin* and Colin R. McInnes®
University of Strathclyde, Glasgow, Scotland G1 1XJ, United Kingdom

This paper investigates ballistic trajectories to and from the vicinity of the Lagrange points L; and L, and the
surfaces of the primaries in the circular restricted three-body problem. The study focuses on trajectories from the
Lagrange points and their Lyapunov orbits that can access the entire surfaces of the primary bodies for the sun—
Earth and Earth-moon systems. By a symmetry property, trajectories leaving the surface of the primary bodies
and reaching the Lagrange points and their Lyapunov orbits can also be found. The lowest velocity increment
providing such whole-surface coverage from the Lagrange points and the lowest-energy Lyapunov orbit providing
whole-surface coverage are found. Applications of such trajectories are to be found in sample return missions and
future crewed missions that use the Lagrange points as exploration staging posts.

Introduction

INCE 1978, six sun—Earth Lagrange point missions have been

flown and others are in development.! A systematic study of
halo orbit theory was initiated by Farquhar et al,>* and Farquhar and
Kamel* and after the works of Richardson,® Breakwell and Brown,’
Howell et al.,” and Howell,® halo orbits around the Lagrange points
have been investigated in great detail. The most significant progress
in this field has been finding invariant manifolds and the application
of nonlinear dynamical systems theory to space mission design. Be-
cause of its low fuel consumption and elegant ballistic trajectory, the
Genesis mission’ stimulated great interest in the application of non-
linear dynamical systems theory to design space missions. Canalias
et al.,! Howell et al.,” Howell,® Gomez et al.,” Koon et al.,'"~!3 Lo
and Ross,'* and Ross" have made contributions to the field. Lo
and Ross presented the concept of the Interplanetary Superhighway
and lunar Lagrange point getaway'* to use connections among the
Lagrange points to achieve low-energy transfers from the Earth to
the moon or other bodies. Using dynamical system theory Koon
et al.!? provide a comprehensive explanation of the Japanese low-
energy lunar mission Hiten, whose trajectory was based on the work
of Belbruno and Miller.!® These studies show that the Lagrange
points of the solar system are one of the most important features of
multibody dynamics.

Trajectories from the Lagrange points to the primaries of the
restricted three-body problem have been investigated previously.
Broucke!” studied trajectories from the Earth-moon Lagrange
points to the moon in some detail, and provided a relationship be-
tween the initial flight path angle, energy, and flight time. In almost
the same way, Prado'® studied trajectories between the Earth—-moon
Lagrange points and the Earth. D’Amario and Edelbaum'® also
investigated the minimum transfer between L, and the Earth and
moon. They focused on the relationship between initial flight angle,
impulse, and arrival time, which also gave the minimum impulse at
L, for moon arrival.

In this paper we investigate ballistic trajectories to and from the
Lagrange points L; and L,, and their Lyapunov orbits, directly to
the surfaces of the primaries. In particular, we focus on mapping
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transfers using these trajectories that access the entire surface of
the primaries. Such trajectories are of importance for sample return
missions and future crewed missions that use the Lagrange points as
exploration staging posts. We consider the circular restricted three-
body problem and investigate both the sun—Earth and Earth-moon
systems. The lowest velocity increment for whole-surface coverage
is found for the following five cases: from the Earth-moon L; and
L, points to the lunar surface (close to the surface for terminal
powered descent), from the Earth-moon L, point to Earth’s surface
(atmospheric interface for aerobraking), and from the sun—Earth L,
and L, points to the Earth’s surface. The relationship between the
initial flight path angle, arrival angle, and transfer time is given. For
transfers from Lyapunov orbits to the primaries the following six
cases are studied; from the sun—Earth L; and L, Lyapunov orbits
to the Earth, from the Earth-moon L; and L, Lyapunov orbits to
the lunar surface, and from an Earth parking orbit to the sun—Earth
L, and L, Lyapunov orbits. Finally, we provide indirect ballistic
transfers to the Earth’s surface from a sun—Earth L; Lyapunov orbit
and a direct ballistic lunar sample return scheme. Again, applications
of such trajectories are to be found in sample return missions, and
future crewed missions which use the Lagrange points as exploration
staging posts.

Circular Restricted Three-Body Problem

We consider the problem in the framework of a planar, circular
restricted three-body system. This problem assumes that two point-
mass primary bodies revolve around their center of mass in circular
orbits under the influence of their mutual gravitational attraction.
The third body (of infinitesimal mass) moves in the orbit plane of the
two primaries under their gravitational influence. The dimensionless
equations of motion in a coordinate system rotating with the two
primaries are adopted, in which w is the mass of the smaller primary
and 1 —  is the mass of the larger primary.?’ We will consider two
three-body systems, the Earth-moon system with @ =0.0122 and
a separation distance of 3.84 x 10> km and the sun—Earth system
with 1 =304036 x 107 and a separation distance of 1.5 x 10~%
km. We also assume that the primaries’ surfaces are spheres, but
for purposes of analysis, the surfaces are defined as having radii of
6500 km for the Earth and 1766 km for the moon. This assumes that
a surface intersecting trajectory will either aerobrake at the Earth’s
atmospheric interface or perform a terminal powered descent at the
moon.

In the rotating frame, as shown in Fig. 1, the two primaries are
fixed and the equation of the third body’s motion can be given as>’

P-2j=—

ax (12)
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Fig. 1 Definition of the coordinate system and the arrival angle.
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Differential equation (1) possesses only one invariant quantity, the
well-known Jacobian integral, which can be defined as

C=2Q—G2+3Y 3)

Another important property of Eq. (1) is its five equilibrium points,
three collinear points, and two equilateral points. Here we focus only
on L; and L,, which have attracted great interest in recent years,
because of their potential application for space mission design. We
note the following:

Symmetry
Equation (1) has an important symmetric property S such that

S:{x,y, %, 9, t) = {x,—y, —x,y, —t} 4

If we have trajectories from the Lagrange points or their Lyapunov
orbits to the primaries, the corresponding reverse trajectories from
the primaries to the Lagrange points or their Lyapunov orbits can be
found by the symmetry property. For example, if we have a stable
manifold of a Lyapunov orbit that goes through a point P (x, y, X, y),
we can integrate backward from P’(x, —y, —X, y) to get the unsta-
ble manifold, which, in fact, is symmetric to the stable manifold,
which can be obtained directly from the symmetric property. There-
fore, here we investigate only one set of trajectories, because their
reverse trajectories can be easily obtained by the symmetry property.

Lagrange Point Lyapunov Orbits and Invariant Manifolds

Another important dynamical property of Eq. (1) is the family
of periodic orbits around the equilibrium points. Among them the
periodic orbits associated with L, and Ls are Lyapunov stable for a
certain range of the mass ratio, and those associated with L;—L; are
unstable for any mass ratio.”’ However, the unstable orbits possess
stable and unstable invariant manifolds. The invariant manifold is a
multidimensional surface embedded in the whole phase space of the
system, and orbits starting on the surface will always remain on that
same surface. The invariant manifolds are useful for space mission
design, because if the stable manifold of a Lyapunov orbit intersects
with an Earth parking orbit, one can directly insert the spacecraft
onto the stable manifold to transfer to a Lyapunov orbit. Similarly,
if the unstable manifold of a Lyapunov orbit intersects with the
surface of a primary, the spacecraft can be transferred onto a ballistic
trajectory to the surface of the body (with aerobraking at the Earth,
or powered terminal descent at the moon). The collinear points also
possess the invariant manifolds. In the two-dimensional case the
invariant manifolds associated with a collinear point are a central
manifold and two lines: one stable and one unstable. According to
the method given in Ref. 9, it can easily be verified that those lines
cannot intersect the surfaces of any primary in the sun—Earth or
Earth—-moon system.

Transfers from L; and L, to the Surfaces
of the Primaries

In this section, using numerical integration, we investigate tra-
jectories from the Lagrange points L; and L, to the surface of the
primaries. We focus on transfers from the Lagrange points that can
access the entire surface of the Earth and moon and provide the
lowest velocity required for such transfers and the one—one corre-
spondence between the initial flight-path angle, the arrival angle,
and the transfer time. Here the initial flight angle is defined as the
counterclockwise angle between the velocity vector and the posi-
tive x-axis. Similarly, as shown in Fig. 1, the arrival angle is also
defined as the counterclockwise angle between the velocity vector
and the positive x-axis. But for the curve’s continuity, sometimes
it may take the value o — 360. Transfer time is defined as the time
from departure to the primary’s surface. Again, by the symmetry
property, trajectories leaving the surface of the primary bodies and
reaching the Lagrange points can also be found.

We now place the spacecraft at L; or L, and then systematically
vary the magnitude and direction (all possible directions from O to
360 deg) of the initial velocity vector. Numerical results show that
when the velocity is smaller than a critical value, whatever values
the flight-path angle takes, there are no direct transfer trajectories
from the Lagrange points which provide whole-surface coverage.
Then we fix the velocity at the smallest value and change the initial
flight angle in a smaller range to find a more accurate one—one
correspondence between the initial flight-path angle and the surface-
arrival angle. Numerical results yield the smallest velocity required
for whole-surface coverage, as listed in Table 1. If the velocity is
smaller than another smaller critical value, the spacecraft cannot
directly transfer to any point on the primaries at all, and due to the
three-body system’s nature all orbits become prograde. This has
also been found for a related problem described in Ref. 21. The next
section will show that these results are also true for transfers from
Lyapunov orbits. However, there may then exist indirect trajectories
that reach the surfaces of the primaries after reflecting on the zero-
velocity surfaces.

Figure 2a shows the family of trajectories from the Earth—-moon L,
point to the moon providing whole-surface coverage. In this figure
and the following, the letter “E” means “Earth” and “M” means
“moon.” Figure 2b shows the correspondence between the initial
flight path angle, the arrival angle, and the transfer time. Figures 3a
and 3b are the same curves for trajectories from the sun—Earth L,
point for whole-Earth-surface coverage. The families of trajectories
from the Earth-moon L, point to the lunar surface, from the Earth—
moon L, to the Earth’s surface, and from the sun—Earth L, point to
the Earth’s surface were also determined. The results are given in
Table 1, but the trajectories are omitted due to similarity to Figs. 2
and 3. In Ref. 19, the minimum transfers from L, to the moon are
given as 235.6 m/s for 48 h and 144.1 m/s for 77 h. This is the
minimum velocity requirement for transfer to a place on the Moon
in a certain time, but this velocity cannot transfer to the whole surface
of the Moon with any initial flight angle.

Transfers Between Lagrange Point Lyapunov Orbits
and the Primaries

In this section we consider ballistic trajectories from La-
grange point Lyapunov orbits to the surfaces of the primaries.
The method of calculating a Lyapunov orbit is referenced from
Refs. 5 and 8; stable and unstable manifolds can be referenced
from Ref. 9. In a manner similar to the trajectories from the
Lagrange points to the surfaces of primaries, numerical results
show that the transfers from Lagrange-point Lyapunov orbits also
have the property that trajectories from low-energy Lyapunov
orbits cannot access the entire surface of the primaries. If the en-
ergy is reduced further, it cannot even directly transfer to any point
on the surfaces of the primaries. Transfer from a Lyapunov orbit
to the larger of the primaries in the three-body problem is found
to be difficult, and indeed for coverage of the smaller primary, a
relatively large Lyapunov orbit is required. We implemented the
numerical analysis, detailed in Table 2, for the Earth-moon and
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Table 1 Transfer from the Lagrange points to primary surfaces

Transfer Velocity (m/s)

C

Transfer time (days)

Initial flight path angle (deg)

From Earth-moon L to lunar surface 291.5 3.10715773477815 1.5-2.2 17.47-67.70
From Earth-moon L to lunar surface 293.6 3.08982708074122 1.8-2.7 202.49-251.09
Form Earth—-moon L to Earth surface 11354 1.95628273477815 2.2-3.7 215.63-263.53
Form sun—Earth L; to Earth surface 455.8 3.00066536657090 25-33 36.54-65.53
From sun—Earth L, to Earth surface 456.7 3.00066039681623 25-33 217.07-246.26
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Fig. 2 a) Surface coverage trajectories from the Earth-moon L; point
to the lunar surface; b) correspondence between initial flight path angle,
arrival angle, and transfer time.

sun—Earth systems. It is found that in the Earth—-moon case the small-
est Lyapunov orbit that can directly cover the entire surface of the
moon has C =3.12185282430647 for an L, Lyapunov orbit and
C =3.09762627497867 for an L, Lyapunov orbit. In the sun—Earth
case it is found that C =3.00070183603177 for an L; Lyapunov
orbit and C =3.00070031306437 for an L, Lyapunov orbit.
Figure 4a shows a family of direct, whole-Earth surface-coverage
trajectories from the sun—Earth L; Lyapunov orbit to the Earth’s sur-
face (atmospheric interface). Here the amplitude of the y-direction
is 0.007676, about 1,151,400 km in dimensional real size. We also
investigated other types of whole-surface-coverage transfers from
Lyapunov orbits and transfers from Earth parking orbits to sun—
Earth Lyapunov orbits, as shown in Table 2. Here we applied a
small velocity increment as the initial perturbation to the space-
craft to leave the Lyapunov orbit and enter the stable or unstable
manifold. In these cases a small perturbation velocity increment,
1m/s, was applied along the x-direction. The stable manifold is
obtained by forward integration and the unstable manifold is ob-
tained by backward integration. In Fig. 4a the star marks indicate
the position where the initial perturbations are applied, and Fig. 4b
shows the transfer time and arrival angle. Note that here the transfer
time depends on the magnitude and position of the initial perturba-
tion. Comparing the Jacobian constants in Tables 1 and 2, it can be
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Fig. 3 a) Surface coverage trajectories from the sun—Earth L, point to
the Earth’s surface; b) correspondence between initial flight path angle,
arrival angle, and transfer time.

seen that whole-surface coverage from Lyapunov orbits requires a
lower energy than that from Lagrange points, but the transfer time is
longer.

The design procedure for transfers from Earth parking orbits to
a Lyapunov orbit is usually based on a shooting method. However,
the stable manifold offers an alternative method. For a Lyapunov
orbit with energy smaller than a critical value there is no direct
transfer from an Earth parking orbit to the Lyapunov orbit, because
they do not intersect each other. Here we numerically obtain the
smallest Lyapunov orbit whose stable manifold intersects with an
Earth parking orbit for the sun—Earth system. The results are listed in
the last two rows of Table 2. The altitude of the Earth parking orbit is
taken as 222 km, and lunar perturbations are not considered. Figure 5
shows the stable manifolds of the smallest sun—Earth Lyapunov
orbits that intersect with the Earth parking orbit defined above. But
the stable or unstable manifolds of a normal Earth-moon L, or L,
Lyapunov orbit do not intersect with an Earth parking orbit.

Indirect Ballistic Transfers
and Connected Periodic Orbits
As noted earlier, if a Lyapunov orbit is too small, then direct bal-
listic trajectories providing whole-surface coverage, or even trans-
fers to any location on the surface of a primary, do not exist.
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Table 2 Jacobian constant and transfer time from smallest Lyapunov orbits

Transfer C Transfer time (days)
From Earth-moon L; halo to lunar surface 3.12185282430647 ~11

From Earth-moon L, halo to lunar surface 3.09762627497867 ~14

Form sun-Earth L; halo to Earth surface 3.00070183603177 ~172

From sun—Earth L, halo to Earth surface 3.00070031306437 ~175

Form Earth parking orbit to sun—Earth L halo 3.00081946031763 ~165

From Earth parking orbit to sun—Earth L, halo 3.00081513373089 ~167
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Fig. 4 a) Surface coverage trajectories from sun-Earth L; Lyapunov
orbit to the Earth’s surface; b) arrival time and arrival angle from sun—
Earth L; Lyapunov orbit to the Earth’s surface.
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Fig. 6 a) Direct and indirect transfers from the sun—-Earth L; Lya-
punov orbit to the Earth’s surface; b) transfer time for trajectories
shown in Fig. 5a.

However, some indirect trajectories may exist, similar to the in-
direct ballistic transfer from a sun—Earth Lyapunov orbit to Earth’s
surface (atmospheric interface) of the Genesis mission. In the pre-
vious two sections we have discussed direct transfer to the surface
of the primaries, but for indirect transfer there is a different-energy
Lyapunov orbit with a particular unstable manifold. Some Lyapunov
orbits have a manifold of only prograde unstable orbits, while some
have prograde and retrograde orbits simultaneously. We have found
several families of indirect transfers numerically. Figure 6a shows
some direct transfers (dotted line) and two types of indirect trans-
fers from a sun—Earth L, Lyapunov orbit to the Earth’s surface,
with C =3.00077466890398. Again, the marks “ x ” “x,” and “<”
indicate the locations where the initial perturbations are applied.
Among them the dashed line trajectories, which are similar to the
Genesis mission, are reaching the Earth’s surface after only one re-
flection on the zero-velocity curve. The solid-line trajectories are a
different family of indirect transfers that reach the Earth’s surface
after two reflections on the zero-velocity curve. Figure 6b shows
the transfer time of these 21 trajectories, the marks correspond-
ing to Fig. 6a. Indirect transfers required approximately 3 months
longer than direct transfers. However, the transfer type and transfer
time again depend on the initial perturbation, with a larger perturba-
tion shortening the transfer time and possibly changing the transfer
type.
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Fig. 7 a) Double lunar homoclinic periodic orbit; b) double lunar het-
eroclinic periodic orbit.

If the energy of a Lyapunov orbit increases further, the Genesis-
like indirect transfers can disappear, and the trajectory becomes
much more complicated. Among the more complicated trajectories
found are several families of periodic orbits that are associated with
the Lyapunov orbits. Figure 7 shows two families of double periodic
orbits in the Earth-moon system, similar to the single homoclinic
and heteroclinic orbits that have been found in Ref. 10. These nu-
merical results show that in fact homoclinic or hetoroclinic orbits
with multiple periodicity can also be found.

Ballistic Lunar Sample Return

There is growing interest in a return to the moon using both
robotic surface landers and crewed missions. Using the concept of
the Interplanetary Superhighway, Ref. 22 provides several types
of low-energy lunar-sample return schemes. Here we investigate
another type of low-energy lunar-sample return, using direct ballistic
transfers between the Earth and moon. From the trajectories between
the Lagrange points and the primaries, it is clear that low-energy
ballistic transfers between the Earth and moon cannot be found in
the vicinity of L;. However, to determine a direct ballistic transfer
from the moon to the Earth, we can use the unstable manifold of a
sun—Earth Lyapunov orbit.

First, we determine the unstable manifold of a sun—Earth
Lyapunov orbit and transform it into the Earth-moon rotating coor-
dinate system. We then find a trajectory that traverses the vicinity
of the moon, which we regard as a reference trajectory. Figure 8a
shows some unstable manifold (dotted lines of Fig. 6a) trajectories
transformed into Earth-moon rotating coordinates. Among these
trajectories the solid line trajectory is passing through the lunar
surface, and so can be used as a reference trajectory to generate
a moon-to-Earth direct ballistic transfer. Finally, between the Earth
and moon we take a point on this trajectory, from which we integrate
forward and backward to obtain a trajectory from the lunar surface
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Fig. 8 a) Sun-Earth halo orbit unstable manifold plotted in Earth-
moon frame; b) ballistic trajectories from the lunar surface to the
Earth’s surface using the unstable manifold of a sun-Earth halo orbit;
¢) lunar sample return trajectory generated using the unstable manifold
of a sun—-Earth Lyapunov orbit.

to the Earth in the Earth—-moon system. The difference between the
trajectory obtained and the reference trajectory is due to solar per-
turbations, because in the Earth-moon system solar perturbations
are not considered. The results, however, show that in this case the
difference is very small. Varying the initial states on the lunar sur-
face, one can obtain a set of trajectories that map onto the Earth’s
surface. Figure 8b shows trajectories from a single point on the
lunar surface to the Earth’s surface (atmospheric interface for aer-
obraking). We can then find similar trajectories from other points
on the lunar surface, with the takeoff velocity requirement for a
ballistic transfer of order 2500-2800 m/s. Figure 8c shows a com-
plete lunar sample return scheme generated by this method, where
the spacecraft is injected from a 200-km Earth parking orbit and
lands on the Earth side of the lunar surface. For illustration, the
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Table 3 Lunar sample return trajectory requirements

Duration (days) Av (m/s)
Injection from Earth — 3090
Lunar landing 3.03 2558
Lunar take-off —_— 2558
Earth return 3.35 —_—
Total 6.38 8196
Conic section method 9.08 9506

“Reference 22.

vehicle takes off from the same location on a direct ballistic return
to the Earth. The total trip time is less than 1 wk, and the energy
need is low, being approximately 14% less than from the conven-
tional conic section method, as detailed in Table 3.

Conclusions

This paper investigated ballistic trajectories from the vicinity of
the Lagrange points L; and L, to the surfaces of the primaries in
the circular restricted three-body problem. In particular, the study
focused on the trajectories from the Lagrange points and their
Lyapunov orbit, which provided whole-surface coverage for the
sun—Earth and Earth—-moon systems. The lowest velocity increment
that provided whole surface coverage was found for trajectories from
the Earth—-moon L; and L, points to the moon, from the Earth—-moon
L, point to the Earth, and from the sun-Earth L, and L, points to the
Earth. Because of the particular flow near the Lagrange points, if
the velocity increment is smaller than some critical value, whatever
values the initial flight path angle takes, there are no trajectories
which provide whole surface coverage. The relationship between
the initial flight path angle, arrival angle and transfer time is pro-
vided. Applications of such trajectories are to be found in sample
return missions, and future crewed missions which use the Lagrange
points as exploration staging posts.

For transfers from Lyapunov orbits to the primaries, trajecto-
ries from the sun—Earth L, and L, Lyapunov orbits to the Earth,
from the Earth-moon L; and L, Lyapunov orbits to the lunar sur-
face, and from an Earth parking orbit to the sun—-Earth L; and L,
Lyapunov orbits were investigated. Because of the Lyapunov orbit
invariant manifold structure, small Lyapunov orbits do not provide
direct ballistic transfers providing whole-surface coverage of the
primaries. Indeed, if the Lyapunov orbits become small enough,
they do not have a direct transfer to any location on the primaries.
Finally, a low-energy, ballistic lunar sample return trajectory is pro-
vided, which requires a velocity increment of order 14% less than
the conventional patched conic method.
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